


Supplementary Figure 1. Selection process of research for systematic review and meta-analysis.

The studies to be analyzed were limited to studies on human population and included all ages. Research designs included in the analysis were case-crossover studies, cohort studies, and time series analysis. We excluded reviews, letters, case reports, gray literature, preclinical studies, and also excluded studies that did not have abstract or full text.

Supplementary Figure 2. Funnel plot for the possibility of publication bias in meta-analysis.

Supplementary Table 1. The quality evaluation of the studies included in the meta-analysis through Newcastle-Ottawa scale.

	Selection				Comparability	nparability Outcome				
Study	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Outcome not present at the start of the study	Comparability of cohorts on the basis of the design or analysis	Assessment	Length of follow-up	Adequacy of follow-up of cohorts	Total	Quality*
Hansen et al., 2008 [12]	*	*	*	-	*	*	*	*	*****	Good
Pincus et al., 2010 [26]	*	*	*	-	*	*	*	*	*****	Good
Tawatsupa et al., 2012 [27]	-	*	-	*	*	_	*	*	****	Fair
Lin et al., 2013 [10]	*	*	*	-	**	*	*	*	*****	Good
Bobb et al., 2014 [28]	-	*	*	*	*	*	*	*	*****	Good
Tasian et al., 2014 [22]	*	*	*	*	*	*	*	*	*****	Good
Ordon et al., 2016 [23]	*	*	*	*	**	*	*	*	*****	r Good
Yang et al., 2016 [24]	*	*	*	-	*	*	*	*	*****	Good
Moyce et al., 2017 [29]	-	*	*	-	*	*	-	*	****	Fair
Ogbomo et al., 2017 [30]	*	*	*	-	**	*	*	*	*****	Good
Lim et al., 2017 [25]	*	*	*	*	**	*	*	*	*****	r Good

^{*} Good quality: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/exposure domain Fair quality: 2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/exposure domain Poor quality: 0 or 1 star in selection domain OR 0 stars in comparability domain OR 0 or 1 stars in outcome/exposure domain