| Home | E-Submission | Sitemap | Contact Us |  
Korean Journal of Preventive Medicine 2002;35(2): 136-140.
An Approach to Survey Data with Nonresponse: Evaluation of KEPEC Data with BMI.
Jieun Baek, Weechang Kang, Youngjo Lee, Byung Joo Park
1Department of Statistics, Seoul National University College of Natural Science, Korea.
2Department of Informetrics and Statistics, Daejun University College of Natural Science, Korea.
3Department of Preventive Medicine, Seoul National University College of Medicine, Korea.
OBJECTIVES: A common problem with analyzing survey data involves incomplete data with either a nonresponse or missing data. The mail questionnaire survey conducted for collecting lifestyle variables on the members of the Korean Elderly Phamacoepidemiologic Cohort(KEPEC) in 1996 contains some nonresponse or missing data. The proper statistical method was applied to evaluate the missing pattern of a specific KEPEC data, which had no missing data in the independent variable and missing data in the response variable, BMI. METHODS: The number of study subjects was 8,689 elderly people. Initially, the BMI and significant variables that influenced the BMI were categorized. After fitting the log-linear model, the probabilities of the people on each category were estimated. The EM algorithm was implemented using a log-linear model to determine the missing mechanism causing the nonresponse. RESULTS: Age, smoking status, and a preference of spicy hot food were chosen as variables that influenced the BMI. As a result of fitting the nonignorable and ignorable nonresponse log-linear model considering these variables, the difference in the deviance in these two models was 0.0034(df=1). CONCLUSION: There is a lot of risk if an inference regarding the variables and large samples is made without considering the pattern of missing data. On the basis of these results, the missing data occurring in the BMI is the ignorable nonresponse. Therefore, when analyzing the BMI in KEPEC data, the inference can be made about the data without considering the missing data.
Key words: Algorithm; Questionnaire; Log-linear Models; Body Mass Index; Korean Elderly Pharmacoepidemiologic Cohort
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
CrossRef TDM  CrossRef TDM
Editorial Office
Graduate School of Public Health, Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Tel : +82-2-740-8328   Fax : +82-2-764-8328   E-mail: jpmph@prevmed.or.kr
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © 2022 by Korean Society for Preventive Medicine.                 Developed in M2PI