Short-term Effect of Fine Particulate Matter on Children’s Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis

Hyungryul Lim¹, Ho-Jang Kwon¹, Ji-Ae Lim¹, Jong Hyuk Choi¹, Mina Ha¹, Seung-Sik Hwang², Won-Jun Choi³

1. Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
2. Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon, Republic of Korea
3. Department of Occupational and Environmental Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea

Corresponding author: Ho-Jang Kwon
Address: Department of Preventive Medicine, Dankook University College of Medicine, Dandaero 119, Dong-nam gu, Cheonan, Chung-nam, Republic of Korea
Zip code: 31116
Mail: hojang@dankook.ac.kr
Tel: +82-41-550-3879
Fax: +82-41-556-6461

Running title: Effect of PM₂.₅ on asthma in children

Number of tables: 2
Number of figures: 4
Abstract

Objectives:
No children-specified review and meta-analysis paper about the short-term effect of fine particulate matter (PM$_{2.5}$) on hospital admissions and emergency department visits for asthma has been published. We calculated more precise pooled effect estimates on this topic and evaluated the variation in effect size according to the differences in study characteristics not considered in previous studies.

Methods:
Two authors each independently searched PubMed and Embase for relevant studies in March, 2016. We conducted random effect meta-analyses and mixed-effect meta-regression analyses using retrieved summary effect estimates and 95% confidence intervals (CIs) and some characteristics of selected studies. The Egger test and funnel plot were used to check publication bias. All analyses were done using R version 3.1.3.

Results:
We ultimately retrieved 26 time-series and case-crossover design studies about the short-term effect of PM$_{2.5}$ on children's hospital admissions and emergency department visits for asthma. In the primary meta-analysis, children's hospital admissions and emergency department visits for asthma were positively associated with a short-term 10 μg/m3 increase in PM$_{2.5}$ (relative risk = 1.048, 95% CI: 1.028 – 1.067, $P = 95.7\%$). We also found different effect coefficients by region; the value in Asia was estimated to be lower than in North America or Europe.

Conclusions:
We strengthened the evidence on the short-term effect of PM$_{2.5}$ on children's hospital admissions and emergency department visits for asthma. Further studies
from other regions outside North America and Europe regions are needed for more generalizable evidence.

Keywords
fine particulate matter, PM$_{2.5}$, asthma, children, meta-analysis, short-term effect

Background
The adverse health effects of air pollution on respiratory and cardiovascular diseases are well known to the public. Regulation and monitoring of air pollution are performed at both the national and international levels. Fine particulate matter is one type of air pollutant. It is not a specific chemical entity, unlike other commonly known pollutants such as ozone, sulphur dioxide, and nitrogen dioxide. It is a physical category of dust with different components mixed together [1]. The particle size determines the different categorizations: PM$_{10}$ (less than 10 μm aerodynamic diameter) and PM$_{2.5}$ (less than 10 μm aerodynamic diameter). PM$_{2.5}$ is also known as fine particulate matter.

PM$_{2.5}$ has been reported to play a major role in increasing the chance of mortality due to cardiovascular diseases because it can penetrate the capillary vessel of the lungs and reach the alveoli [2,3]. Extensive research has been conducted on the association between PM$_{2.5}$ and respiratory diseases including asthma. Asthma is a syndrome in which reversible respiratory obstruction occurs and is characterized by hypersensitiveness to allergens. When stimulated, a person experiences wheezing and dyspnea. In most cases, asthma is caused by a genetic predisposition and is triggered by environmental allergens.
The prevalence rate of asthma is high in children. In the case of South Korea, the prevalence rate of asthma in children steadily increased due to urbanization and westernization. In 2010, a national study based on the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire found that 10.1% of elementary school students and 8.5% of middle school students had experienced symptoms of asthma in the past 12 months [4]. These numbers should not be ignored.

Recently published systematic reviews and meta-analyses reported the pooled relative risk (RR) of the number of hospital admissions and emergency department (ED) visits due to asthma as 1.023 (95% CI: 1.015 – 1.031, per 10 μg/m² increase) when examining the effects of PM_{2.5} on the total population, and 1.025 (95% CI: 1.013 – 1.037, per 10 μg/m² increase) when the subject was confined to children only [5]. Another review that examined the effects of fine particulate matter on ED visits due to asthma reported a pooled RR of 1.036 (95% CI: 1.018 – 1.053, per 10 μg/m² increase) [6]. However, existing studies contain several limitations. These studies were not focused on childhood asthma and only presented pooled effect estimates in children as subgroup analysis. Moreover, most of the relevant studies were conducted in North America and Europe [7-28], and although studies conducted in other regions exist [29-32], they did not consider the varying effects of PM_{2.5} according to different regions. The design of the study, the background PM_{2.5} mean concentration and variation of the region where the study was conducted, and the year of study may change the effects as well, but these factors were not adequately considered in existing studies.

In addition to the two reviews mentioned above, seven new relevant papers have recently been published [22-28]. Of these, the time-series studies assessed the exposure to air pollution by using the exposure value of the population-weighted average in between the measuring points of air pollution [22,24,27], and the case-
crossover design studies used the method of matching individual addresses with the PM$_{2.5}$ measures [25,26], which yielded more accurate results. Therefore, by including these recent developments, we calculated more accurate pooled effect estimates of the effects of PM$_{2.5}$ on childhood asthma and assess the variations of effects induced by differences in some factors such as region or date of research, which have been not adequately examined yet.

Methods

Selection Criteria
We first determined some criteria for selecting relevant studies. They are as follows:

1) The subject of study was limited to children and adolescents under the age of 20.

2) Study results were limited to computerized records of hospital admissions and ED visits. Outpatient visits were excluded. Hospital admissions confirmed through interviews were not eligible. Subjective symptoms, decrease in pulmonary function, and use of emergency inhalers were not considered endpoints.

3) Effect estimates had to be presented as an odds ratio (OR) or relative risk (RR).

Search Terms and Study Selection
When deciding on search terms, we minimized keywords in order to increase the sensitivity of our searches. Some of the search terms we used were child*, pediatric*, fine particulate matter*, fine particle*, PM2.5, asthma*, hospitalization, hospitalisation, admission*, ed, er, and emergency. We searched studies to include in our meta-analysis using PubMed and Embase in March of 2016. Moreover, we selected the final eligible studies after having two authors each independently select references according to the criteria above and the same search terms and then comparing the two lists.
Statistical Methods

The effect size was expressed as RR. We considered the OR as a proxy to the RR. In order to have all the effect estimates chosen from the selected studies to reflect the same 10 μg/m³ increment of PM$_{2.5}$ concentration, we implemented meta-analyses after recalculating the β coefficient and 95% CI presented in each study. Because the purpose of this study is to combine and identify the effects from regions all over the world, generalization of heterogeneous parts of the research group was its goal. Therefore, the random effects model using the DerSimonian and Laird estimation method was mainly considered, rather than the fixed effects model [33,34]. When estimating the pooled effect, the model takes into account both the between-study variation and the within-study variation and provides a greater confidence level than the fixed effects model. The I-squared value (%) was calculated in order to identify heterogeneity.

In the primary meta-analysis of this study, an effect estimate that could represent the selected studies was used. We used the same lag value that was presented in the original paper [35], but if a study presented multiple lag models, we selected the one with the largest effect size. This is because, generally, these works report the lag model with the greatest effect size [36]. If a study did not have one effect estimate that could represent the research, we selected two or more values that were obtained from subjects that were mutually exclusive. (That is, if a study did not present an effect estimate in whole participants but presented two or more separate values from stratified groups, we included those in the meta-analysis.) In order to identify publication bias, we conducted the Egger test and identified the degree of asymmetry through a funnel plot [37].

Moreover, we conducted category-specific meta-analyses in order to determine what factors influenced the effect of PM$_{2.5}$, if those influences were robust, and what factors contributed to the heterogeneity of effect estimates. We conducted the analyses by sorting the effect estimates into categories of age, results...
(records of hospital admissions or ER visits), season, design of the study, region, and the lag of exposure. We also conducted a separate analysis according to whether or not different pollutants were adjusted in the statistical model.

We hypothesized that the components of PM$_{2.5}$ would change according to the time of the study and that the size of the effect could change according to the components. In addition, we thought that the variation and the mean concentration of PM$_{2.5}$ in the region where the study was conducted might change the size of the effect. Therefore, through mixed-effects meta-regression, we derived an effect estimate of the date of the study, and the mean and standard deviation of the concentration in the study region on RR for childhood asthma.

All statistical analyses performed using R version 3.1.3 (The Comprehensive R Archive Network: http://cran.r-project.org) and we carried out a series of statistical analyses described above through the *meta* package. All statistical analyses set a 5% significance level for the two-tailed test.

Results

Selection of Relevant Studies and Extracting Effect Estimates and Their Confidence Intervals

A total of 661 references were searched using the search terms mentioned above, and of those, we first selected 56 to examine in whole by excluding overlapping studies ($n = 171$) and reading the titles and abstracts ($n = 490$). Then we ultimately selected 26 studies according to the selection criteria and extracted effect estimates (Figure 1). The 26 studies were published between 1999 and 2016, and we summarized each of the research outlines and the main research results in Table 1. Most of the research was conducted in North America and Europe and both time-series and case-crossover designs were almost equally
After extracting all effect estimates and confidence intervals from the main body of each research paper and its supplementary materials, we broke it down to a total of 244 effect estimates. Of those, we selected 33 representative effect estimates from each study to use in our primary meta-analysis.

Primary meta-analysis

In the random effects model, we were able to find that when the concentration of PM$_{2.5}$ increased by 10 μg/m3, the risk of a child’s hospital admission or ED visit increased by 4.8% (RR = 1.048; 95% CI: 1.028 – 1.067). The I^2 value, which shows the heterogeneity of the included studies, was 95.6%, a high figure. We presented a forest plot for the included effect estimates and pooled estimates (Figure 2).

Publication bias

To schematically examine the tendency toward publication bias, we found a relatively symmetrical shape in the funnel plot and confirmed that there was not much of a bias because there was not statistically significant ($p = 0.421$) in the Egger test (Figure 3).

Category-specific meta-analyses

We found that the effects are greater on children below the age of 5 than on children ages 5 to 19, in warmer seasons, and in North America and Europe than in Asia. The pooled effect estimates extracted through the multi-pollutant model was also statistically significant (RR = 1.040; 95% CI: 1.022 – 1.057). According to the lag models, the effect changed greatly from 0.2% to 6.5%, and the effect was large for 3-day lag and 3-day average lag (Table 2).

Meta-regression analyses

We did not find a tendency toward change in the statistically significant RR
according to the time of study and the standard deviation of the background concentration of the region of study. We found a negative tendency in the mean PM$_{2.5}$ concentration by the region of study, but it was not statistically significant ($\beta = -0.0008$, $p = 0.165$) (Figure 4).

Discussion

In the primary meta-analysis of the effect estimates obtained from the 26 studies, we found that in the short-term, when the concentration of PM$_{2.5}$ increased 10 μg/m3, the risk of a child's hospital admission or ED visit increased 4.8%, which is statistically significant. The effect of PM$_{2.5}$ could be considered quite robust, since the effect was maintained to 4.0% even when we pooled the estimates extracted by the multi-pollutant model in this study. This number is greater than the 2.3% found among the total population presented in the aforementioned study of Zheng et al [5]. These results show that children are more vulnerable to air pollution because their alveoli and airways are still growing, their immune systems are underdeveloped, and they spend more time outdoors, which increases ventilation [38].

Based on known biological mechanisms, the generation of reactive oxygen species (ROS) is accelerated because of the transition metal included in PM$_{2.5}$. Oxidative stress from ROS may be related to epithelial cell destruction and allergic inflammation, and this process is known to be related to exacerbation of asthma [39]. Meanwhile, previous studies reported that arginase may participate in a process that fine particles exacerbate childhood asthma [40]. In vivo studies report that the overexpression of arginase influences the hyperresponsiveness of airways [41] and that fine particles exacerbate the airway's responsiveness in asthma in murine models [42]. Human epidemiological studies have shown that the variation of the ARG1 and ARG2 genes—which are related to the manifestation of arginase in childhood asthma patients—is statistically significant
In the preceding meta-analyses by Zheng et al., they suggested 20 relevant studies on children’s asthma. We found a discrepancy between the selected studies of Zheng et al. and ours even aside from 7 papers published more recently. They cited several studies that we excluded in the process of extracting eligible studies. On the other hand, the 6 studies included in this study were not cited by the preceding study. We selected studies and extracted results carefully focusing on children. Therefore, we believe that the 26 references selected for this study comprise the best selection.

We found that when the concentration of PM$_{2.5}$ increased by 10 μg/m3, the risk of a child’s hospital admission or ED visit increased by 4.8%. This value is greater than the 2.5% increase in children found in the preceding meta-analysis by Zheng, et al. The following are some reasons to explain this difference. First, the newly added original studies included several studies in which the RR exceeded 1.10 when the measure of effect estimates was converted to 10 μg/m3 per increase [7,9,13,20,23,28]. Second, while the previous study pooled the effect estimates from the 0-day, 1-day, or 2-day average lag models, we used the model with the greatest effect size out of the lags reported in the original studies.

In this study, we found a difference in RR according to the season, and during the warmer seasons, the RR was 1.085 (95% CI: 1.051 – 1.119). The studies included in our meta-analysis showed quite consistent results [9,20,22,23,31]. We thought the reason for this was that during warmer seasons, children spend more time outdoors and therefore spend more time exposed to PM$_{2.5}$. In addition, greater ventilation of buildings during these seasons makes it easier for air pollutants to penetrate inside the buildings. It was reported that the individual exposure concentration of PM$_{2.5}$ that people living in well-ventilated environments showed high correlation to the concentration of the atmosphere [44]. The difference in
components of PM$_{2.5}$ according to the season may also be related, but because the extent of heterogeneity by region is too great, the evidence is not yet definitive [45-47].

In terms of the design of the studies, the pooled RRs for the time-series and the case-crossover design studies were 1.028 and 1.051, respectively. For the case-crossover design, the OR was calculated using the conditional logistic regression model. Compared to the RR, the OR has a tendency to overestimate the actual risk. However, it may be thought as a closer representation of reality than the exposure assessment of the time-series because a recently published case-crossover study more accurately matched air pollutants using the addresses of individuals [20,21,25,26]. Residential information of patients entering hospitals or visiting the ED cannot be reflected in time-series. If we suppose that PM$_{2.5}$ having an influence on exacerbating asthma as true, even in one study region, there is a possibility that the large effect in certain area with a high concentration could be diluted because of smaller effects in other area with a low concentration. We think that the actual effect is somewhere between the RRs of the time-series studies and the ORs of the case-crossover studies.

When we examine the pooled RR of each lag model, we can see that there is up to a 6% difference in value depending on the type of model. The effects of both the concentration 3 days before (3-day lag) and the average concentration over 3 days (3-day average lag) were considerable. This result is somewhat difficult to interpret. We need to consider the following factors when dealing with lags: that the ethnicities of the subject of study differ by regions and access to health services could change depending on the period of study.

Through meta-regression analysis, we found a negative tendency among effect sizes depending on the mean concentration of PM$_{2.5}$, but it was not statistically significant. Aside from the 3 studies in China which the mean concentration
exceeded 30 μg/m³ (Figure 4), we did not find a negative tendency in the meta-regression analysis (β = -0.0004, p = 0.903). Therefore, we could not draw conclusions in this study regarding such a limited tendency. A negative tendency means that the effect on asthma is smaller for regions where the mean concentrations of PM$_{2.5}$ are higher. This means that the relationship between the mean concentration and the childhood asthma could be non-linear, or more specifically, supra-linear.

If we examine the results according to region in the category-specific analyses, the pooled RR of the 3 studies conducted in Shanghai and Hong Kong was 1.019, which is a smaller value than those in North America (1.047) and Europe (1.075). This is similar to the results of the previous meta-analysis that examined the short-term effects of PM$_{2.5}$ on total mortality and cardiorespiratory mortality, and found that the pooled estimate in China was lower than in the United States, Europe, Japan, and Australia [48]. A hypothesis that the components of PM$_{2.5}$ in China are different from those of developed countries was raised regarding this finding. In other words, in China, the contributions of coal combustion and desert dust—rather than exhaust from automobiles—were greater than in other regions.

However, in a preceding meta-regression analysis including studies on PM$_{10}$ and cardiorespiratory mortality conducted in China only, a statistically significant negative tendency was reported regarding the association between the mean concentrations of study regions and the effect sizes [49]. A study conducted across 27 U.S. regions also reported that the effect of PM$_{2.5}$ was greater in regions with lower background mean concentration, even though the result was not statistically significant [50]. In a cohort study on the effect of PM$_{2.5}$ on cardiorespiratory mortality, the risks with the concentration level formed a supra-linear shape [2]. Therefore, for the regional effect variation in this study, the hypothesis that the effect was lowered in high concentrations seems more plausible, since only groups with resistance remain and detrimental effects on
individuals vulnerable to PM$_{2.5}$ occur in lower concentrations.

There are many other genetic and environmental factors reported to cause childhood asthma besides PM$_{2.5}$. Another hypothesis, following hygiene theory, states that allergic reactions decrease when children are exposed to microorganisms because immune reactions are suppressed. Since westernization is still in progress in China, the effects of PM$_{2.5}$ on asthma may be small [51,52]. There may be an objection to the previous statement since the 3 Chinese studies included in this study were conducted in Shanghai and Hong Kong, two very westernized large cities, but the infrastructure of the residences and the lifestyles of children growing up in such regions are different from those of North America and Europe.

There are a few limitations of this study. First, outpatient visits, use of inhalers, and other symptom outbreaks could all be considered health effects and consequences, but we confined the results to hospital admissions and ED visits which were mainly reported in previous studies. Therefore, the pooled effect estimate reported in our study might be underestimated. But in a study that uses surveys on symptoms and use of inhalers, the period between the exposure and outbreak could be imprecise. Moreover, results from a survey could be subjective. In cases of outpatient visits, we cannot exclude periodic follow-up cases. Second, we combined the RRs with the ORs because we deemed the OR to be proxy to the RR. Because of this, we may have calculated an overestimated value rather than the actual risk. However, in the case of South Korea, hospitalization due to asthma among children between the ages of 0 to 19 was 0.14% in 2014 [53]. The frequency of hospital admissions or ED visits due to asthma is rare so a possible bias will be negligible. Third, we could not control the innate heterogeneity of the selected studies. Components of PM$_{2.5}$, ethnicities of the study population, and accessibility to health service as well as different age range, season, and adjusting variables or parameters in statistical models all probably affected the
heterogeneity of the studies. However, we did not find a significant decrease of heterogeneity (Table 2). In order to obtain a more accurate pooled effect estimate, a meta-analysis should be conducted after an in-depth examination of the methods and quality of research.

The strength of this study is that we newly included 7 recent studies in our meta-analysis. In addition, with a focus on children, we examined variations in effect of different possible factors, and presented the direction for future studies. In particular, we raised the need for an epidemiological study on regions besides China with high concentrations of PM$_{2.5}$.

Despite several limitations, we found that in the short-term, when the concentration increased by 10 μg/m3, the risk of a child’s hospital admission or ED visit increased by 4.8%. If we consider the fact that air pollution affects a vast range of regions and many populations, this is not a negligible figure. A more fundamental solution is the reduction of the matter from emission sources, so we need to conduct studies on sources that emit PM$_{2.5}$ and draft feasible environment-friendly policies for such emission sources.

Acknowledgment

This study was supported by the R&D Program for Society of the National Research Foundation funded by Ministry of Science, ICT and Future Planning, Republic of Korea (Grant Number: 2014M3C8A5030619).
References

10. Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Ketzel M, Scheike T, Loft S. Size distribution and total number concentration of ultrafine and accumulation

28. Weichenthal SA, Lavigne E, Evans GJ, Godri Pollitt KJ, Burnett RT. PM$_{2.5}$ and
emergency room visits for respiratory illness: effect modification by oxidative potential. Am J Respir Crit Care Med 2016;DOI:10.1164/rccm.20152-2434OC
Europe;2005, p. 12.
Figure 1. Selection process for systematic review and meta-analysis

- **661** articles identified
 - 315 from PubMed
 - 346 from EMBASE

- **171** overlapping articles excluded

- **490** articles remaining after excluding overlapping articles

- **434** articles excluded by reviewing abstracts

- **56** remaining articles reviewed in full-text

- **30** articles excluded according to selection criteria
 - 10 had no stated single PM$_{2.5}$ effect
 - 14 had no relevant outcome (hospitalization and ER visits)
 - 3 had irrelevant subject ages
 - 2 did not report effects CI
 - 1 had a dataset overlapping a previous study

- **26** articles included in the final analysis
Figure 2. Forest plot for selected effect estimates in primary meta-analysis
Figure 3. Funnel plot for a possible selection bias in the primary meta-analysis (right panel). Each black circle notes each effect estimate of the selected studies, and the vertical red dotted line denotes the pooled random effect risk ratio in the primary meta-analysis. The p-value is derived from Egger’s test. After removing three estimates from the right-lower area in the right panel (Anderson, 2008; Tecer, 2008; and Halonen, 2010), we found the funnel plot to be symmetrical (left panel).
Figure 4. Bubble plot and regression line for mixed-effect meta-regression of study mean fine particulate matter (PM$_{2.5}$) concentration and effect estimate. The black circles denote each effect estimate and their sizes represent each weight. The bold red line indicates relative PM$_{2.5}$ concentrations and the black dotted lines indicate a 95% confidence interval.
Table 1. Summary of selected studies on the association of short-term fine particulate matter exposure with pediatric hospital admissions and emergency department visits for asthma

<table>
<thead>
<tr>
<th>Author</th>
<th>Study period</th>
<th>Location</th>
<th>Sample</th>
<th>Exposure assessment</th>
<th>Outcome</th>
<th>Study design</th>
<th>Statistical model</th>
<th>PM$_{2.5}$ arithmetic mean concentrations (µg/m3) (SD)</th>
<th>Major effect estimates (risk ratio) (95% CIs)</th>
</tr>
</thead>
</table>
| Norris et al. | 1995.9.1 - 1996.12.31 | Edmonton, Canada | <18 years, 900 patients | 3 fixed sites; a daily arithmetic mean was calculated and used | ED visits | Time-series | GAM with Poisson distribution | 12.0 (0.5) | Single-pollutant model: 1.15 (1.08-1.23) for 1-day lag IQR increase
Multipollutant model with SO$_x$ and NO$_x$: 1.17 (1.08-1.26) for 1-day lag IQR increase |
| Lin et al. | 1991.1.1 - 1993.12.31 | Toronto, Canada | 6 - 12 years, 7319 (male: 4629, female: 2690) patients | 1 fixed site; the authors obtained data on every 6-day period from 1984 to 1990 and constructed a daily predicted value via modeling. | HA | Time-series and case-crossover design | GAM and conditional logistic regression | 18.0 (8.5) | Single-pollutant model: 1.00 (0.97-1.04) for the same day IQR increase in TS; 1.01 (0.97-1.06) for the same day IQR increase in CCD
(b) in girls, 1.06 (0.99-1.13) for 5-day average IQR increase in TS; 1.04 (0.95-1.15) for 5-day average IQR increase in CCD
Multipollutant model with CO, SO$_x$, NO$_x$ and O$_x$: (a) in boys, 0.96 (0.90-1.02) for 5-day average IQR increase in TS; 0.94 (0.85-1.03) for 5-day average IQR increase in CCD
(b) in girls, 1.01 (0.93-1.10) for 5-day average IQR increase in TS; 0.96 (0.85-1.09) for 5-day average IQR increase in CCD |
| Lee et al. | 1997.1.1 - 2002.12.31 | Hong Kong, China | 18 years, 26630 patients | 13 fixed sites (before 2000, 11 sites); a daily arithmetic mean was calculated and used | HA | Time-series | GAM with Poisson distribution | 45.3 (16.2) | Single-pollutant model : 1.066 (1.045-1.087) for 4-day lag IQR increase
Multipollutant model with SO$_x$, NO$_x$ and O$_x$: 1.032 (1.009-1.056) for 5-day lag IQR increase |
| Ko et al. | 2000.1.1 - 2005.12.31 | Hong Kong, China | 14 years, 23596 patients | 3 fixed sites, tapered element oscillating microbalance (TEOM) method; a daily arithmetic average was calculated and used | HA | Time-series | GAM with Poisson distribution | 65.4 (21.1) | Single-pollutant model: 1.024 (1.013-1.034) for 5-day average 10 (µg/m3) increase |
| Villeneuve et al. | 1998.1.1 - 2002.12.31 | Edmonton, Canada | 2 - 4 years, 7247 patients, 5 - 14 years, 13145 patients | 3 fixed sites; a daily arithmetic mean was calculated and used | ED visits | Case-crossover design | Conditional logistic regression | 7.6a in April to September 7.3b in October to March | Single-pollutant model: (a) in 2-4 years, 1.06 (0.97-1.15) for 5-day average IQR increase;
- October to March: 0.95 (0.84-1.07)
- April to September: 1.16 (1.04-1.28)
(b) in 5-14 years, 1.06 (1.00-1.12) for 5-day average IQR increase;
- October to March: 0.99 (0.91-1.08)
- April to September: 1.10 (1.02-1.17) |
<table>
<thead>
<tr>
<th>Study</th>
<th>Timeframe</th>
<th>Location</th>
<th>Age Range</th>
<th>Patient Count</th>
<th>Study Design</th>
<th>Analysis Method</th>
<th>IQR Increase</th>
<th>p-value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersen et al.</td>
<td>2003.10.3 - 2004.12.31</td>
<td>Copenhagen, Denmark</td>
<td>5 - 18 years, 559 patients in single pollutant model; 318 patients in two-pollutant model</td>
<td>1 fixed site; a daily arithmetic mean was calculated and used</td>
<td>HA</td>
<td>Time-series</td>
<td>GLM with Poisson regression</td>
<td>10.0 (5.0)</td>
<td>Single-pollutant model: 1.15 (1.00-1.32) for 6-day average IQR increase Two-pollutant model with total number of particles: 1.13 (0.98-1.32) for 6-day average IQR increase</td>
</tr>
<tr>
<td>Halonen et al.</td>
<td>1998.11.15 - 2001.12.31</td>
<td>Helsinki, Finland</td>
<td><15 years, 4807 patients</td>
<td>Fixed monitoring site, no specific information available</td>
<td>ED visits</td>
<td>Time-series</td>
<td>GAM with Poisson distribution</td>
<td>9.5</td>
<td>Single-pollutant model: 1.026 (0.983-1.054) for 4-day lag IQR increase</td>
</tr>
<tr>
<td>Jalaludin et al.</td>
<td>1997.11.1 - 2001.12.31</td>
<td>Sydney, Australia</td>
<td>1 - 14 years, 31724 patients</td>
<td>14 fixed sites; a daily arithmetic mean was calculated and used</td>
<td>ED visits</td>
<td>Case-crossover design</td>
<td>Conditional logistic regression</td>
<td>9.4 (5.1)</td>
<td>Single-pollutant model: (a) in 1-4 years, 1.014 (1.007-1.021) for the same-day IQR increase; (b) in 5-9 years, 1.016 (1.005-1.027) for the same-day IQR increase; (c) in 10-14 years, 1.012 (0.998-1.027) for the same-day IQR increase; Two-pollutant model with CO: (a) in 1-4 years, 1.008 (1.001-1.015) for the same-day IQR increase; (b) in 5-9 years, 1.016 (1.006-1.026) for the same-day IQR increase; (c) in 10-14 years, 1.011 (0.999-1.024) for the same-day IQR increase</td>
</tr>
<tr>
<td>Tozer et al.</td>
<td>2004.12.1 - 2005.10.31</td>
<td>Zonguldak, Turkey</td>
<td><15 years, 187 patients</td>
<td>1 fixed site; a daily arithmetic mean was calculated and used</td>
<td>HA</td>
<td>Case-crossover design</td>
<td>Conditional logistic regression</td>
<td>29.1 (Not Available)</td>
<td>Single-pollutant model: 1.25 (1.05-1.50) for 4-day lag IQR increase 1.37 (1.06-1.76) for 4-day lag IQR increase</td>
</tr>
<tr>
<td>Halonen et al.</td>
<td>1998.11.1 - 2004.12.31</td>
<td>Helsinki, Finland</td>
<td>Restricted to the warm season (May to September) <15 years, 1972 patients</td>
<td>2 central sites; a daily arithmetic mean was calculated and used</td>
<td>ED visits</td>
<td>Time-series</td>
<td>GAM with Poisson distribution</td>
<td>8.8</td>
<td>Two-pollutant model with CO: 1.148 (1.058-1.270) for 5-day average IQR increase</td>
</tr>
<tr>
<td>Silverman et al.</td>
<td>1999.11.1 - 2006.12.31</td>
<td>New York City, USA</td>
<td>Restricted to the warm season (April to August) 0-6 years, Non-ICU admission: 15185, ICU admission: 1141 patients 6-18 years, Non-ICU admission: 3032, ICU admission: 994 patients</td>
<td>24 fixed sites; a daily arithmetic mean was calculated and used</td>
<td>HA</td>
<td>Time-series</td>
<td>GLM with Poisson regression</td>
<td>13</td>
<td>Single-pollutant model: (a) in 0-6 years, Non-ICU: 1.14 (1.10-1.19) for 2-day average IQR increase; ICU: 1.03 (0.91-1.17) for 2-day average IQR increase (b) in 6-18 years, Non-ICU: 1.19 (1.13-1.27) for 2-day average IQR increase; ICU: 1.26 (1.10-1.44) for 2-day average IQR increase Two-pollutant model with O₃: (a) in 0-6 years, Non-ICU: 1.13 (1.06-1.18) for 2-day average IQR increase; ICU: 1.04 (0.91-1.19) for 2-day average IQR increase (b) in 6-18 years, Non-ICU: 1.16 (1.06-1.23) for 2-day average IQR increase</td>
</tr>
<tr>
<td>Study</td>
<td>Year Range</td>
<td>Location</td>
<td>Age Range</td>
<td>Population</td>
<td>Methods</td>
<td>Controls</td>
<td>Exposure</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Stříbecká et al. (2018) [15]</td>
<td>1998.1 - 2006.12.31</td>
<td>Atlanta, USA 5 - 17 years, 91386 patients</td>
<td>11 fixed sites; a population-weighting average across monitors was calculated and used</td>
<td>ED visits</td>
<td>Time-series</td>
<td>GLM with Poisson regression</td>
<td>Single-pollutant model: - Whole period: 1.020 (1.002-1.039) for 3-day average IQR increase; - Warm season: 1.043 (1.016-1.070) for 3-day average IQR increase; - Cold season: 1.005 (0.978-1.031) for 3-day average IQR increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2011) [16]</td>
<td>2001.1 - 2006.12.31</td>
<td>Pittsburgh, USA 2 - 4 years, 5327 patients; 5 - 9 years, 3945 patients; 11 - 17 years, 3661 patients</td>
<td>4 fixed sites; a daily arithmetic mean was calculated and used</td>
<td>ED visits + HA</td>
<td>Time-series and case-crossover design</td>
<td>GAM and conditional logistic regression</td>
<td>Single-pollutant model: 1.030 (1.001-1.061) for 5-day average IQR increase in TS; 1.039 (1.013-1.066) for 5-day average IQR increase in CCD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glad et al. (2012) [17]</td>
<td>2003.1 - 2005.12.31</td>
<td>Detroit, USA 0 - 17 years, 978 patients</td>
<td>2 fixed sites; a daily arithmetic mean was calculated and used</td>
<td>ED visits</td>
<td>Case-crossover design</td>
<td>Conditional logistic regression</td>
<td>Single-pollutant model: 1.012 (0.916-1.118) for the same-day 30 μg/m³ increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iskandar et al. (2012) [18]</td>
<td>2007.3 - 2012.12.31</td>
<td>Copenhagen, Denmark 0 - 18 years, 6329 patients</td>
<td>1 fixed site; a daily arithmetic mean was calculated and used</td>
<td>HA</td>
<td>Case-crossover design</td>
<td>Conditional logistic regression</td>
<td>Single-pollutant model: 1.09 (1.04-1.13) for 5-day average IQR increase; Two-pollutant model with NO₂: 1.06 (1.02-1.11) for 5-day average IQR increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winslow et al. (2012) [19]</td>
<td>2001.1 - 2007.6.27</td>
<td>St. Louis, USA 0 - 1 years; - ED: 12236 patients 2 - 18 years; ED: 49978 patients - All HA: 7095 patients</td>
<td>1 fixed site; a daily arithmetic mean was calculated and used</td>
<td>ED visits + HA</td>
<td>Time-series</td>
<td>GLM with Poisson regression</td>
<td>Single-pollutant model: (a) in 0-1 years; - ED: 1.047 (0.999-1.097) for 5-day average IQR increase; (b) in 2-18 years; - ED: 1.050 (1.023-1.080) for 5-day average IQR increase; - HA: 1.052 (0.985-1.123) for 5-day average IQR increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delfino et al. (2014) [20]</td>
<td>2000.1 - 2008.12.31</td>
<td>California, USA 0 - 18 years, 31396 patients</td>
<td>Subject addresses were geocoded; a modified California LINE Source Dispersion Model, ver. 4 (CALIN4) to estimate pollutants at each residence</td>
<td>ED visits + HA</td>
<td>Case-crossover design</td>
<td>Conditional logistic regression</td>
<td>Warm season: 18.0 (9.5); Cool season: 19.0 (13.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gleason et al. (2014) [21]</td>
<td>2004.1 - 2007.12.31</td>
<td>New Jersey, USA 3 - 17 years, 21854 patients</td>
<td>Subject addresses were geocoded; 12x12-km grid from the Multi-Scale Air Quality Model to estimate pollutants at each residence</td>
<td>ED visits</td>
<td>Case-crossover design</td>
<td>Conditional logistic regression</td>
<td>Not available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICU: 1.23 (1.07-1.41) for 2-day average IQR increase

Subject addresses were geocoded; 12x12-km grid from the Multi-Scale Air Quality Model to estimate pollutants at each residence;...
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Location</th>
<th>Age Range</th>
<th>Number of Patients</th>
<th>Exposure Period</th>
<th>Study Design</th>
<th>Analysis Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hua et al. (2014)</td>
<td>2007-11-2012</td>
<td>Shanghai, China</td>
<td>0-14 years, 114673 patients</td>
<td>37538, 0-4 years: 75274, 5-14 years: 39399</td>
<td>1 fixed site; a daily arithmetic mean was calculated and used</td>
<td>Health</td>
<td>Time-series, Polynomial distributed lag model</td>
<td>Single-pollutant model: 1.04 (1.02-1.05) for IQR increase with a maximum lag of 3 days; 1.06 (1.05-1.08) for IQR increase with a maximum lag of 5 days; Multiple-pollutant model with NOₓ and SO₂: 1.03 (1.02-1.05) for IQR increase with a maximum lag of 3 days; 1.06 (1.04-1.08) for IQR increase with a maximum lag of 5 days</td>
</tr>
<tr>
<td>Strickland et al. (2014)</td>
<td>2002-11-2010</td>
<td>Atlanta, USA</td>
<td>2-10 years, 109758 patients</td>
<td>3 fixed sites; a population-weighting average across monitors calculated and used</td>
<td>ED visits</td>
<td>Time-series, GLM with Poisson regression</td>
<td>Single-pollutant model: 1.05 (1.01-1.09) for 3-day average IQR increase; Two-pollutant model with O₃: 1.02 (1.00-1.05) for 3-day average IQR increase</td>
<td></td>
</tr>
<tr>
<td>Wendt et al. (2014)</td>
<td>2005-11-2001</td>
<td>Boston, USA</td>
<td>0-17 years, 6061 patients</td>
<td>7894 patients</td>
<td>3 fixed sites; a daily arithmetic mean was calculated and used</td>
<td>Health</td>
<td>Case-crossover design, Conditional logistic regression</td>
<td>Single-pollutant model: 1.11 (1.01-1.17) for 6-day average IQR increase; - November to April: 1.06 (1.00-1.14) for 6-day average IQR increase; Two-pollutant model with NOₓ: - May to October: 1.13 (1.04-1.24) for 6-day average IQR increase; - November to April: 1.00 (0.93-1.07) for 6-day average IQR increase</td>
</tr>
<tr>
<td>Byers et al. (2016)</td>
<td>2007-11-2011</td>
<td>Indianapolis, USA</td>
<td>3-17 years, 33981 patients</td>
<td>3 fixed sites; a population-weighting average across monitors calculated and used</td>
<td>ED visits</td>
<td>Time-series, GLM with Poisson regression</td>
<td>Single-pollutant model: - All seasons: 1.007 (0.996-1.029) for 3-day average IQR increase; - April to September: 0.985 (0.934-1.040) for 3-day average IQR increase; - October to March: 0.976 (0.930-1.025) for 3-day average IQR increase</td>
<td></td>
</tr>
<tr>
<td>Gheason et al. (2015)</td>
<td>2004-11-2001</td>
<td>Newark, USA</td>
<td>3-17 years, 3675 patients</td>
<td>Subject addresses were geocoded; Grid from the Multi-Scale Air Quality Model to estimate pollutants at each residence</td>
<td>ED visits</td>
<td>Time-series and case-crossover design, GLM and conditional logistic regression</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Strickland et al. (2015)</td>
<td>2002-11-2010</td>
<td>Georgia, USA</td>
<td>2-18 years, 389816 patients</td>
<td>Daily PM₁₀ concentrations estimated using a two-stage model that includes land use parameters and satellite aerosol optical depth measurements at 1-km resolution</td>
<td>ED visits</td>
<td>Case-crossover design, Conditional logistic regression</td>
<td>Single-pollutant model: 1.013 (1.003-1.023) for the same day 10 μg/m³ increase</td>
<td></td>
</tr>
<tr>
<td>Alhanti et al. (2016)</td>
<td>2006-11-2009</td>
<td>Dallas, USA</td>
<td>0-4 years, 16,911 patients</td>
<td>5-18 years, 16,711 patients; mean daily counts: 23,753 patients</td>
<td>ED visits</td>
<td>Time-series, GLM with Poisson regression</td>
<td>Single-pollutant model: in 0-4 years: 0.99 (0.94-1.02) for 3-day average IQR increase; in 5-18 years: 0.99 (0.93-1.03) for 3-day average IQR increase</td>
<td></td>
</tr>
</tbody>
</table>
Weichenthal et al. (2016) [28]
Total: 127836 patients, <9 years: not available
Fixed site in Ontario which is part of Canada’s National Air Pollution Surveillance (NAPS) network; a daily arithmetic mean was calculated and used
ED visits Case-crossover design Conditional logistic regression 7.1 (6.3) Single-pollutant model: 1.072 (1.042-1.100) for 3-day average IQR increase

1 This is the median value of the daily PM$_{2.5}$ distribution during the entire study period. We were not able to identify the arithmetic mean of PM$_{2.5}$ in this study.
2 The authors regarded asthma morbidity as hospital encounters which counted both HA and ED visits.
Table 2. Results of category-specific meta-analyses.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of studies (Number of estimates)</th>
<th>Relative risk (95%CI)</th>
<th>I^2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 5</td>
<td>7 (9)</td>
<td>1.044 (1.017 - 1.071)</td>
<td>81.9</td>
</tr>
<tr>
<td>5 - 18</td>
<td>12 (15)</td>
<td>1.027 (1.011 - 1.043)</td>
<td>76.8</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>10 (15)</td>
<td>1.048 (1.029 - 1.067)</td>
<td>77.7</td>
</tr>
<tr>
<td>ED visits</td>
<td>15 (17)</td>
<td>1.027 (1.011 - 1.044)</td>
<td>79.5</td>
</tr>
<tr>
<td>Season</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>7 (8)</td>
<td>1.015 (0.994 - 1.037)</td>
<td>57.1</td>
</tr>
<tr>
<td>Warm</td>
<td>9 (11)</td>
<td>1.085 (1.051 - 1.119)</td>
<td>94.8</td>
</tr>
<tr>
<td>Study design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>15 (19)</td>
<td>1.028 (1.015 - 1.041)</td>
<td>76.9</td>
</tr>
<tr>
<td>CCD</td>
<td>13 (17)</td>
<td>1.051 (1.020 - 1.084)</td>
<td>96.6</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>14 (19)</td>
<td>1.047 (1.019 - 1.076)</td>
<td>96.1</td>
</tr>
<tr>
<td>Europe</td>
<td>8 (11)</td>
<td>1.075 (1.030 - 1.123)</td>
<td>65.9</td>
</tr>
<tr>
<td>China</td>
<td>3 (3)</td>
<td>1.019 (1.013 - 1.025)</td>
<td>0.0</td>
</tr>
<tr>
<td>Multipollutant model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>25 (33)</td>
<td>1.054 (1.037 - 1.071)</td>
<td>96.0</td>
</tr>
<tr>
<td>Yes</td>
<td>13 (18)</td>
<td>1.040 (1.022 - 1.057)</td>
<td>83.1</td>
</tr>
<tr>
<td>Time Lag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 day (same day)</td>
<td>12 (14)</td>
<td>1.018 (1.005 - 1.028)</td>
<td>60.9</td>
</tr>
<tr>
<td>1 day</td>
<td>11 (13)</td>
<td>1.018 (1.005 - 1.030)</td>
<td>59.6</td>
</tr>
<tr>
<td>2 day</td>
<td>8 (8)</td>
<td>1.002 (0.984 - 1.021)</td>
<td>84.6</td>
</tr>
<tr>
<td>Day</td>
<td>Count (Sample Size)</td>
<td>Estimated Value (95% CI)</td>
<td>Outcome</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>3 day</td>
<td>10 (11)</td>
<td>1.030 (1.015 - 1.045)</td>
<td>66.6</td>
</tr>
<tr>
<td>4 day</td>
<td>4 (4)</td>
<td>1.016 (0.969 - 1.065)</td>
<td>83.1</td>
</tr>
<tr>
<td>5 day</td>
<td>5 (6)</td>
<td>1.019 (0.975 - 1.065)</td>
<td>93.5</td>
</tr>
<tr>
<td>2-day average</td>
<td>3 (7)</td>
<td>1.065 (1.020 - 1.113)</td>
<td>81.7</td>
</tr>
<tr>
<td>3-day average</td>
<td>11 (15)</td>
<td>1.019 (1.006 - 1.033)</td>
<td>82.2</td>
</tr>
<tr>
<td>5-day average</td>
<td>10 (14)</td>
<td>1.025 (1.007 - 1.043)</td>
<td>77.4</td>
</tr>
<tr>
<td>6-day average</td>
<td>3 (5)</td>
<td>1.029 (0.938 - 1.129)</td>
<td>69.9</td>
</tr>
</tbody>
</table>

1 DerSimonian and Laird random effects model
2 There are two exceptions: Silverman (2010) and Iskandar (2012): Cut-off age is 6

(Abbreviations) HA: hospital admission, ED: emergency department, TS: time-series, CCD: case-crossover design