대사중후군과 뇌심혈관질환 발병위험도 평가와의 연관성:
일개 사업장 남성 근로자를 대상으로

윤종완1), 이경진1), 오장근1,2), 이상윤3)

울지대학교병원 산업의학과1), 울지대학교 예방의학교실1), 서울대학교 보건대학원 산업의학과3)

The Relationship between Metabolic Syndrome and Korean Cardiocerebrovascular Risk Assessment: for Male Researchers in a Workplace

Jongwan Yoon1), Kyungjin Yi1), Janggyun Oh1,2), Sangyun Lee3)

Department of Occupational & Environmental Medicine, Eulji University Hospital1), Department of Preventive Medicine, Eulji University School of Medicine2), Department of Occupational & Environmental Medicine, School of Public Health, Seoul National University3)

Objectives : The prevalence of metabolic syndrome has recently increased. Payments from the Korea Labor Welfare Corporation for compensation for mortality in workers caused by cardiovascular and cerebrovascular diseases have also increased in Korea in recent years. The association of metabolic syndrome and cardiocerebrovascular disease has been investigated by several researchers in recent studies. This study was conducted in an attempt to characterize the relationship between metabolic syndrome and Korean cardiocerebrovascular disease risk assessment, and to provide basic data to group health practices for the prevention of cardiocerebrovascular disease.

Methods : Health examinations were previously conducted for 1526 male researchers at a private laboratory. The prevalence by age and the odds ratio of metabolic syndrome scores into the “cardiocerebrovascular risk group” (sum of low, intermediate, and high risk groups) of the Korean cardiocerebrovascular disease risk assessment were assessed, in an effort to elucidate the associations between metabolic syndrome and cardiocerebrovascular disease risk assessment.

Results : The prevalence of metabolic syndrome and inclusion in the cardiocerebrovascular risk group was 11.7% and 22.1% respectively. The severity of metabolic syndrome and cardiocerebrovascular risk assessment showed that individuals in their 40’s and 50’s were at higher risk than those in their 30’s (p<0.001). The age-adjusted odds ratio of metabolic syndrome to cardiocerebrovascular risk group inclusion was 5.6.

Conclusions : An active prevention program for cardiocerebrovascular disease needs to begin in the 40’s, as the prevalence of metabolic syndrome and the risk group of cardiocerebrovascular risk assessment peak in the 40’s age group. The odds ratio between metabolic syndrome and the cardiocerebrovascular risk group was high, which indicates that metabolic syndrome scores should be utilized as guidelines during the consultation and behavioral modification program for the workplace prevention of cardiocerebrovascular diseases in group health practices.

Key words : Obesity, Metabolic syndrome X, Cardiovascular disease, Cerebrovascular disorders

서론

연구대상 및 방법

1. 연구대상

본 연구의 조사 대상은 2005년 한대학병원에서 종합검진을 실시한 13세 이상 연구소의 연구대상군으로 1,079명 중 18세 이상 181명을 제외한 남성 근로자 1,526명이었다. 여성은 제외한 이유는 대부분이 20세에 집중되어 있어 남성 집단과 인구조사의 차이를 보장하기 때문이었다.

2. 연구방법

1) 대사증후군 진단기준

Table: National Cholesterol Education Program - Adult Treatment Panel III (NCEP-ATP III) 진단기준에 의하여 대사증후군의 유병률을 산출하였다. 아시아 대표평가지역의 NCEP-ATP III 대사증후군 진단기준은 "하리둘레(90 cm 이상), 혈압(130/85 mmHg 이상), 중성지방(150 mg/dL 이상), 고밀도콜레스테롤(40 mg/dL 미만), 혈당(110 mg/dL 이상)으로 구성되어 [18] 기준을 초과할 경우 당뇨병 확대파천 가하여 총점이 3점 이상부터 대사증후군으로 진단하였다. 대사증후군의 심각도(진단기준의 개수)에 따라 대상자들1을 5군으로 구분하였다.

2) 전향에서의 낮성혈관질환 예방을 위한 방범위험도 평가

높성혈관질환 발생위험도 평가에 따른 개개인은 방범위험도 평가의 3단계, 업무적합성평가, 사후관리로 구분된다. 방범위험도 평가의 3단계는 다음과 같이 이루어진다. 저산간의 제1단계별 정리는 고혈압의 유무 및 정도를 판단하는 것이다. 고혈압은 1도 고혈압(수축기 140-159 mmHg, 확장기 90-99 mmHg), 2도 고혈압(수축기 160-179 mmHg, 확장기 100-109 mmHg), 3도 고혈압(수축기 180 mmHg 이상, 확장기 110 mmHg 이상)으로 분류된다. 평가의 제 2단계로 1도 및 3도 고혈압(수축기 140 mmHg 이상 또는 확장기 100 mmHg 이상)에 해당하는 것으로는 55세 이상. 콜레스테롤(총콜레스테롤이 240 mg/dL 초과 혹은 저밀도콜레스테롤이 160 mg/dL 초과), 헤모글로빈, 고밀도콜레스테롤이 35 mg/dL 미만, 적체가족의 심혈관질환 조기발생(60세 이전), 비만도 (BMI ≥ 25 kg/m2)이거나 신체활동부족, 심방세동(심혈관질환의 위험인자에 한해서) 등에 대한 저성혈관질환 발생위험도 인자 중 한 1개를 택하고, 고밀도콜레스테롤이 높을 경우 (60 mg/dL 초과) 경우를 1개를 감산한다. 방범위험도 평가 제3단계로 사후관리 및 저조할수를 위한 방범위험도 평가를 하면 되는데, 정상군, 저위험군(1도 고혈압이면서 위험인자가 없을 때), 중등도위험군(2도 고혈압
이거나 위험인자가 1-2개 그리고 표적장 기준선이 없을 때), 고위험군(3도 고혈압이거나 위험인자 3개 이상이거나 표적장 기준선이 있을 때)으로 나누어 [14, 19]. 본 조사에서는 정상군을 "저혈당 정상군", 것으로 정의하여 저혈당 고혈압군의 합을 "저혈당 정상군"으로 분류하였다.

3) 전문 및 설문조사

숙련된 간호사의 도움을 받으며 표준화된 설문서가 피검자가 자신에 의해 작성되었는지, 설문서는 자료가 연구목적으로 사용될 수 있도록 동의하였다. 설문내용은 피검자가 과거에 한 번도, 가장 최근까지의 저혈당 정상군의 합을 "저혈당 정상군"으로 분류하였다.

4) 채혈 검사

신장과 체중은 피검자가 신발을 신지 않고 가볍게 의복을 착용한 상태에서 자동화된 측정기를 이용하여 측정하였다. 혈압은 피검자가 최소 5개건 이상 측정된 후 표준화된 수온혈압기를 이용하여 측정하였다. 분석에는 최소 1분 간격으로 측정한 두개 측정치의 평균치를 적용하였다.

5) 혈액검사

 모든 참여자들은 최소 8시간의 급식상태에서 정확 채혈하여 혈당, 콜레스테롤, 고밀도포리백콜레스테롤, 중성지방단백을 측정하였다. 혈당은 신화법을 이용하여 측정하였다. 혈청 콜레스테롤, 고밀도포리백콜레스테롤, 그리고 중성지방단백은 효소 비색법을 이용한 자동분석기 (Advia 1650)를 측정하였다. 저밀도포리백콜레스테롤 농도는 Friedewald 공식에 의하여 계산하였다.

6) 통계분석

 수집된 자료는 SPSS for Windows version 13.0(SPSS Inc., Chicago, IL)를 사용하여 통계처리를 하였다. 연령별 대상자군 십각도(0-5점), 저혈당정상군의 발생위험도(정상군, 저혈당군, 중등도위험군, 고위험군)와의 연관성을 카이제곱 분석하였다. 대상자군의 십각도와 저혈당정상군의 발생위험도와의 관련성은 저혈당위험군의 발생 위험도 평가의 정상군을 "저혈당 정상군"으로 하여 저혈당군, 중등도위험군과 고위험군의 합을 "저혈당 정상군"으로 정의하여 로지스틱 회귀분석으로 교차분석을 하였다.

결과

1. 연구대상자의 일반적 특성

남성 총 1,526명을 분석대상으로 하였으며, 연령별 피험자의 일반적 특성으로서 30대가 947명(62.1%), 40대가 463명(30.0%), 50대가 116명(7.6%)이었고 평균연령은 38.65 ± 6.68세 이었다. 대상자군의 대부분은 정상군으로 분류하였다.

2. 연령별 대상자군의 각 위험인자 보도

대상자군의 위험인자 분포는 증상지표 포함 도메니의 이상비율(32.7%)이 가장 높고, 혈압(30.1%), 고밀도포리백콜레스테롤 수치(20.0%), 혈당(14.2%), 혈액(5.5%)의 순서였다. 연령별로는 30대에서는 정상지표, 고밀도포리백콜레스테롤, 혈압, 혈당, 혈당, 혈당의 순이었으며, 40대와 50대는 정상지표, 고밀도포리백콜레스테롤, 혈당, 혈당의 순이었다(Table 2).

연령별로 보면 중심지방 수치의 이상 비율은 연령별로 30대 299명(31.6%), 40대 157명(33.9%), 50대 43명(37.1%)으로 연령대가 증가함에 따라 위험도가 증가하였다. 대상자군에서 이상비율이 증가하였으나 통계적으로 유의하지 않았다(p=0.395). 혈압의 이상비율은 30대 237명(25.0%), 40대 179명(38.4%), 50대 45명(38.8%)으로 연령대가 증가함에 따라 이상비율도 증가하였으나 통계적으로 유의하지 않았다(p=0.001). 고밀도포리백콜레스테롤의 이상비율은 30대 259명(27.3%), 40대 148명(32.0%), 50대 37명(31.9%)의 분포를 보였으나 통계적으로 유의하지 않았다(p=0.158). 혈당의 이상 비율은 30대 119명(12.6%), 40대 78명(16.8%), 50대 19명(16.4%)의 분포로 보였으나 통계적으로 유의하지 않았다(p=0.074). 공복혈당의 이상비율은 30대 22명(2.3%), 40대 44명(9.5%), 50대 18명(15.5%)으로 연령대가 증가함에 따라 공복혈당의 이상비율도 증가하였으나 그 분포는 통계적으로 유의하지 않았다(p=0.001)(Table 2).

Table 2. Metabolic syndrome risk factors according to age, n(%) Risk factor Age Total p value
<table>
<thead>
<tr>
<th>Risk factor</th>
<th>30-39</th>
<th>40-49</th>
<th>50-</th>
<th>Total</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglyceride (≥ 150 mg/dL)</td>
<td>299 (31.6)</td>
<td>157 (33.9)</td>
<td>43 (37.1)</td>
<td>499 (32.7)</td>
<td>0.395</td>
</tr>
<tr>
<td>Blood pressure (≥ 130/85 mmHg)</td>
<td>237 (25.0)</td>
<td>178 (38.4)</td>
<td>45 (38.0)</td>
<td>460 (30.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL cholesterol (< 40 mg/dL)</td>
<td>259 (27.3)</td>
<td>148 (32.0)</td>
<td>37 (31.9)</td>
<td>444 (29.1)</td>
<td>0.158</td>
</tr>
<tr>
<td>Waist circumference (≥ 90 cm, male)</td>
<td>119 (12.6)</td>
<td>78 (16.8)</td>
<td>19 (16.4)</td>
<td>216 (14.2)</td>
<td>0.074</td>
</tr>
<tr>
<td>Fasting glucose (≥ 110 mg/dL)</td>
<td>22 (2.3)</td>
<td>44 (9.5)</td>
<td>18 (15.5)</td>
<td>84 (5.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Total</td>
<td>947 (62.1)</td>
<td>463 (30.3)</td>
<td>116 (7.6)</td>
<td>1,526 (100)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Metabolic syndrome severity according to age, n(%) Age Metabolic syndrome severity Total
<table>
<thead>
<tr>
<th>Age</th>
<th>0</th>
<th>1</th>
<th>2 (≥3+5)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>395 (41.7)</td>
<td>269 (28.4)</td>
<td>202 (21.3)</td>
<td>866 (91.4)</td>
<td>61 (6.4)</td>
<td>20 (2.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>40-49</td>
<td>143 (30.9)</td>
<td>189 (30.0)</td>
<td>107 (23.1)</td>
<td>389 (84.0)</td>
<td>49 (10.6)</td>
<td>20 (4.3)</td>
<td>5 (1.1)</td>
</tr>
<tr>
<td>50-</td>
<td>35 (30.2)</td>
<td>30 (25.9)</td>
<td>28 (24.1)</td>
<td>93 (80.2)</td>
<td>16 (13.8)</td>
<td>7 (6.0)</td>
<td>6 (5.0)</td>
</tr>
<tr>
<td>Total</td>
<td>573 (37.5)</td>
<td>438 (28.7)</td>
<td>337 (22.1)</td>
<td>1,348 (88.3)</td>
<td>126 (8.2)</td>
<td>47 (3.1)</td>
<td>5 (3.3)</td>
</tr>
</tbody>
</table>

p value<0.001, Metabolic syndrome severity by age
단락 4. 카르디오세로브스락스컬 위험도평가에 대한 연령, n(%) Table 4. Cardiocerebrovascular risk assessment according to age, n(%)

<table>
<thead>
<tr>
<th>Age</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(1+2+3)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>799 (84.4%)</td>
<td>76 (8.0%)</td>
<td>721 (7.6%)</td>
<td>0 (0.0%)</td>
<td>148 (15.6%)</td>
</tr>
<tr>
<td>40-49</td>
<td>321 (69.3%)</td>
<td>69 (14.9%)</td>
<td>60 (13.0%)</td>
<td>4 (0.9%)</td>
<td>142 (30.7%)</td>
</tr>
<tr>
<td>50-69</td>
<td>69 (9.5%)</td>
<td>24 (30.7%)</td>
<td>20 (25.0%)</td>
<td>7 (8.8%)</td>
<td>47 (60.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>1,189 (77.6%)</td>
<td>169 (11.1%)</td>
<td>161 (10.6%)</td>
<td>7 (0.4%)</td>
<td>337 (22.1%)</td>
</tr>
</tbody>
</table>

*p value< 0.001, Cardiocerebrovascular risk assessment severity by age

p value< 0.001, Cardiovascular risk score group (1+2+3) prevalence by age

단락 5. 카르디오세로브스락스컬 위험도평가에 따른 뇌실질 관찰된 발병위험도 평가 Table 5. Cardiocerebrovascular risk assessment by metabolic syndrome according to age, n(%)

<table>
<thead>
<tr>
<th>AGE</th>
<th>MS: Normal</th>
<th>0 (%): Metabolic syndrome</th>
<th>1 (%): Cardiocerebrovascular risk score group (1+2+3)</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-39</td>
<td>108 (12.5%)</td>
<td>866 (100.0%)</td>
<td>6.8</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>40 (40.4%)</td>
<td>81 (100.0%)</td>
<td>4.1</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>39 (31.2%)</td>
<td>93 (100.0%)</td>
<td>7.9</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>126 (15.7%)</td>
<td>1348 (100.0%)</td>
<td>6.2</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*MS: Metabolic syndrome; Normal group: 1 Metabolic syndrome group

단락 6. 생도자조정 로지스틱 회귀분석 결과에 의한 카르디오세로브스락스컬 위험도평가에 따른 뇌실질 관찰된 발병위험도 평가 Table 6. Age adjusted logistic regression of cardiocerebrovascular risk assessment by metabolic syndrome severity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>6.40</td>
<td>3.8 - 10.6</td>
<td><0.001</td>
</tr>
<tr>
<td>2</td>
<td>17.60</td>
<td>10.7 - 29.0</td>
<td><0.001</td>
</tr>
<tr>
<td>3</td>
<td>25.80</td>
<td>14.6 - 46.0</td>
<td><0.001</td>
</tr>
<tr>
<td>4+5</td>
<td>59.40</td>
<td>27.8 - 126.9</td>
<td><0.001</td>
</tr>
<tr>
<td>(0+1+2) group</td>
<td>1.00</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>(3+4+5) group</td>
<td>5.60</td>
<td>4.0 - 7.8</td>
<td><0.001</td>
</tr>
</tbody>
</table>

뇌실질관찰된 관성에서의 중요성은 비만으로 인한 사회경제적 비용부담의 증가를 들 수 있다. 비만과 관련된 당뇨, 고혈압, 혈청지질, 중증, 암, 음성산성결핍 등 의 만성질환에서의 사회경제적 측면에서 고찰할 때, 부하에 비만관리비용이 국민건강 의료비에서 차지하는 비율은 미국 10.2%, 네덜란드 4.0%, 호주 3.2% 등 이었으나 한국의 경우는 약 1.88%까지 산출하였 다. 비만은 비만관리비용이 지급체 의료료에서 차지하는 비율은 미국 10.2%, 네덜란드 4.0%, 호주 3.2% 등 이었 으며 한국의 경우는 약 1.88%까지 산출하였 다. 비만관리비용이 지급체 의료료에서 차지하는 비율은 미국 10.2%, 네덜란드 4.0%, 호주 3.2% 등 이었 으며 한국의 경우는 약 1.88%까지 산출하였 다. 비만관리비용이 지급체 의료료에서 차지하는 비율은 미국 10.2%, 네덜란드 4.0%, 호주 3.2% 등이었던 것이다.[20]

4. 연령 및 대사증후군 별 뇌실질관찰된 발병위험도 평가

대사증후군 전반적으로 증가하는 위험도 있으며, 연령대에서는 101명 (56.7%)으로 비 전단군 236명 (17.5%)보다 보다 약 3.2배 정도 높았다 (p<0.001). 연령별로는 30대 40명 (49.4%), 40대 43명 (58.1%), 50대 18명 (78.3%)으로서 연령이 높아짐에 따라 증가하는 반도를 보였다. 연령별 고혈압도 30대 6.8배, 40대 4.1배, 50대 7.9배의 반도를 보였다. 같은 연령에서 대 사증후군 전단군은 정상군보다 뇌실질관찰된 위험군에 속하는 군의 비율이 약 2.3-3.9배 가량 증가하는 반도를 보였다 (p<0.001)(Table 5).

5. 대사증후군 진단의 인자에 따른 뇌실질관찰된 발병위험도 평가

대사증후군이 없는 군(0점군, 1점군, 2점군)을 참고군으로 지정하며 뇌실질관찰된 위험군과의 로지스틱회귀분석을 한 결과, 대사증후군이 있는 군(3점군, 4점군, 5점군)에서의 차이가 5.6배이며 통계적으로 유의한 것으로 나타났다. 대사증후군 0점군을 참고군으로 지정하여 뇌실질관찰된 위험군과의 로지스틱회귀분석을 한 결과, 각각의 결과는 대사증후군 점수가 1점인 군이 3.2배, 2점인 군이 17.6배, 3점인 군이 25.8배, 4점군과 5점군은 59.4배로 사망되었고 이는 통계적으로 유의한 것으로 나타났다 (p<0.001)(Table 6).

고 참

보건관리 및 경제에서 비만과 관련된 뇌실질관찰된 건강에서의 중요성이 비만으로 인한 사회경제적 비용부담의 증가를 들 수 있다. 비만과 관련된 당뇨, 고혈압, 혈청지질, 중증, 암, 음성산성결핍 등의 만성질환에서의 사회경제적 측면에서 고찰할 때, 부하에 비만관리비용이 국민건강의료비에서 차지하는 비율은 미국 10.2%, 네덜란드 4.0%, 호주 3.2% 등이었으며 한국의 경우는 약 1.88%까지 산출하였던 바 있으며 국내 비만관리비용은 태국에 비해 높은 점을 감안하면 가까운 미래에 비만으로 인한 사회경제적 문제가 지연될 것이다.[20]
여성 35.4 % [22], 미국 65세 이상 노인 중 남성 32.1 %, 여성 37.4 % [23], 미국의 저수
하의 여성인구에서도 낮은 19.8 %, 여성
25.4 % [24], 유럽 일반 인구에서 남성 15.7
이상이고 대상구호군과의 연관성
은 그동안 다수의 단편연구나 로호트연구
에서 밝혀져 왔고 [10.12.26], 체험관련
과의 연관성이 국내 연구에서는 최근 정
상인에게 대상구호군 점수가 무중상
뇌경색(silent brain infarction)과의 연관성에
관하여 연구된 바 있다 [11]. 전향성 로호트
연구인 스탠피아 바라바타바 콜로소 연
구에서 프레임장 점수가 큰 군이 대상
중추근이 함께 있다고 주요 관련도
사건(major coronary event)의 발생 증가와
관련이 있음을 밝혔다. 이 논문에서의 결
론으로 중국부분적으로 도출된 위험도 평
가도구에 대한 점수에 설명되지 못하는 위험도가 분명 존재한다는 것을 제시하였
다 [10]. 이는 대상중추근의 전단 기준 중
프레임장 점수에 포함되지 않는 인자
(증상지방, 하리둘레)들이 체험관련
발병에 기여한다는 것을 의미한다. 대상
중추근에서의 대표적인 병변인 이성질
혈증은 자주뇌증의 증가, 증상지방의 증가,
고밀도필라멘트의 감소, 크기가 작아
지고 밀도가 높아져서 저밀도필라멘트 증가
를 보여준다. 이러한 크기가 감소한 저밀
도필라멘트는 정상중추근혈증에 관련
되어 있다 [27].

사업장에서의 체험관련 과정 및 관
련에서의 문제점으로 위험도 예측에 있어
서 인종과 국가별 차이가 주로 나타남을
한다는 점이다. 국내 사업장에서 일하는 이주
근로자들의 보건관리를 시행할 때, 서구
권 출신의 근로자, 같은 이하 지역 사
람이이다 인디언들 경우에는 다른 이주
인들과 체계적인 달리서 동일한 체험
관련환법 위험도 평가의 적용 시 선
택전란의 가능성이 있다는 점과 같은 인
종이나 혈액主业, 문화적인 요소에
의해 영향을 받는 결과가 크게 탐안될 수
있다는 점 등을 고려해야한다 [28]. 체험
관련환법 위험도 평가에 사용된 변수는
미국의 대사추세嗤 지역에 거주하는 백인
주민을 대상으로 한 프레임장 연구에서
유래되었는데 이를 프레임장 위험도 평가
지수로서 그대로 중국에 거주하는 동안인
에 적용시키면 체험관련 위험도를 크게
4배까지 개대정가할 수 있으며 [29], 영국
거주 백인에 적용시킬 때 대가량의 차이
를 가질 수 있다 [30].

대상중추근의 전단기준에서는 하리둘
래가 동통 및 발양형 수증 전단기준에 의
다동안에 적합하도록 교정되어 있다.
하리둘래 전단기준에 대한 논란도 분명
존재하는데, 하리둘래 기준에 대해서 인
종과 문화적 차이를 고려해야 한다는 주
장이 있으며 [31], 한국인에게 적합한 기준
이 되는 하리둘래는 남자 90 cm, 여자 85 cm
이라고 주장되었던 적도 있다 [32]. 신
체 수치가 빠르게 변화하는 국내에서는
지속적인 보정이 필요할 것으로 사료
되어야 한다. 현재 국내에서는 복부 비만의 정도
로서 하리둘래를 측정하는 대 상례이며
측정하는 신체 크기, 측정법의 표준
가 반드시 필요하다 [33].

본 논문의 연구대상은 대상중추근 위험
인자와의 분포를 보면 혈압과 고혈당의 유
병률은 연령이 증가할수록 증가하는 경
향이 있고 통계적으로 유의하였으나간
성지방, 고밀도필라멘트, 하리둘래의
유병률은 연령에 따라 증가하는 경향은
보였으나 통계적으로 유의하지는 않았다.
이 연령이 증가함수록 대상중추근 심각
도가 높아짐을 시사한다.

본 논문의 대상중추근 유병률은 11.7%로
이에선 국내에서 조사되었던 대상중추근
의 유병률은 1992년 22.5% [2006년 24.1 %]
보다 낮게 나타났다 [27]. 이는 대상자들의
연령증가 다른 조사결과에 비해 낮게
대상자 대부분이 심부전과 고혈압을 필요
로 하는 연구적 근로자들은 점근고
소득층에 속한다는 점 등 사회경제적수준
이 낮은 대에 인증하는 것으로 보이며
사회계급이 높은 점에서 건강평생의
차이가 있다는 점에 주목한 바
있다 [34].

연령이 증가함수록 대상중추근 유병률을
이 증가하는데 기존의 Park 등 [31]의 연구
에서도 30대 5.4%, 40대 9.4%, 50대 18.2%로
증가하였던 경우와 같이 연령과 대상중
추근 유병률은 연령에 주로 보인다.
연령별 대상중추근 유병률은 30대 8.6%에
서 40대 16.0%로 연 2배로 급증하는 점
과 50대 인구는 30대에서 많았고 3-5개인 군
은 40-50대에서 많은 점은 40대를 기점
으로 대상중추근에 취약해지며 건강관리
이 이 시점에 적극적으로 이루어져야함을
시사한다.

연령별 체험관련 발병 위험군의 유병률
에서 30대 15.6%, 40대 30.7%로 2배 이상
증가하는 점, 정상군에서는 30대가 많았으
며 저위험군과 그보다 높은 군에서는 40-
50대의 많은 점도 체험관련관련 발병위험
도 평가에 의한 보건관리는 40대를 기점으
로 시작해야함을 시사한다. 체험관련관련
발병위험도 평가의 제 2단계 평가와의 연
결이 포함되어 있음에도 불구하고 연령
별자켓검사를 현 이유는 본 조사에
서는 55세 이상인 군이 적었기 때문이었다.
대상중추근 유무 별 체험관련 발병 위험
군에 속하는 분포를 보고 한 연구군에서
대상중추근 전단군이 56.7%, 혹은 군은
17.5%로 3배 이상 높았다. 또한 연령이 높
아짐에 따라 체험관련관련위험도는 증가
하는 분포를 보였고, 같은 연령에서 대상
중추근 전단군이 없는 군보다 약 23.3 배
가량 증가하는 분포를 보였다. 이는 대상
중추근 전단군과 체험관련관련 발병 위험
군이 연령이 있을을 시사한다. 따라서
체험관련관련화를 위해서는 대상중추근
관리가 중요하며 그 관리의 고려대상에서
강화 내지는 지속되어야 함을 의미한다.
대상중추근 심각도가 높음수록 교차기
가 증가함을 관찰하였고 대상중추근분류
1점이라 할지라도 교차기가 6.4로 증가해
있음을 알 수 있었다. 2점부터는 약 5점보
다 교차기가 더욱 크게 증가함을 관찰하
였다. 이는 체험관련질환 예방을 위해서
는 대상중추근 관리는 심각도가 낮은 발
병 초기에 필요함을 시사한다. 대상중추
군 유무 별 연령 보정된 로지스틱회귀분
석을 시행하여 교차기가 5.6로 낮은 것은 대
상중추근 전단군과 체험관련관련 발병위
험도 평가의 위험군은 높은 연령을 보
이며 체험관련관련예방을 위해서는 대
결론적으로 대사중후군에 따른 뇌심혈관 질환 발생 위험도 평가와의 관련성을 파악하기 위하여 일개 연구소 남성 근로자 중 526명을 대상으로 조사한 결과, 대사중후군 진단군의 유병률과 뇌심혈관 병변 위험군의 유병률은 40대부터 크게 증가하여 뇌심혈관질환에 대한 사망률과 관련된 뇌심혈관질환 발생 위험도 평가기의 구조가 황록색으로 시각작용을 유발하는 결과로 나타났으며 이는 대사중후군 진단군과 뇌심혈관질환 발생위험도 평가의 위험군 연관성이 있음을 알 수 있다.

따라서 향후 사망률 관리에서도 뇌심혈관질환의 예방을 위해서는 대사중후군의 관리와 중요하며, 뇌심혈관질환 발생위험도 평가 등이 전산화되어 대상자 본인에게 설명과 함께 자료가 공개되며 건강증진을 위한 동기를 부여하는데 도움이 될 것이다.

본 논문의 제한점으로 이 연구는 단일연구 구조로 인과관계를 규명할 수 없고, 연구대상자는 1개 사업장 직원을 대상으로 조사하였으나 대체로도시에 거주하여 이들의 교육수준이 소위상의 고학력자들이 이는 점, 높은 연봉을 받는 사회경제적 수준이 높은 근로자라는 점과 여자 대상자를 제외하고 연구대상자의 대부분이 30대와 40대로 60대 이상 고령층이 거의 없는 점 등은 선정권한의 영향이 있고 연구결과를 일반화시켜서는 한계가 있다. 이러한 제한점을 고려하여 결론을 해석하는 것이 필요할 것이며 90년대 이후 업무상 뇌심혈관질환의 유병률 및 모양이 증가하고 있는 점으로 이루어질 때 이에 관련된 후속연구가 더 필요할 것으로 사료된다.

참고문헌

8. NCEP-ATPIII (National Cholesterol Education Program- Adult Treatment Panel...

